
Automated Coding of Stream-Order

or: SQL Magic in GIS

By Gido Langen

The sample network

- Strahler order coding

- Why a new method

1st order

2nd order

3rd order

4th order

Network representation

- Geometric network

- Implicit network

 data structure

- No explicit network

 data structure/model

Explicit network data model

- Network topology

- Connectivity

- From-to-node notation

Create network data structure

Create nodes
Start & end nodes

Spatial join
Confluence or braiding

Node removal
Remove duplicate nodes

- From geometric data structure

- To topological network data model

Topological network data model

- Segment table

- Node table

Strahler order coding rules

- Iterative elimination of upper-most branches

- Special cases: bridges, braided streams

Strahler order coding rules

- SQL implementation
• Segments whose From-nodes

 have no corresponding To-nodes

• Find bridge segments

• Find nodes that are From-nodes

 of more than one segment

• Confluences of braided streams

 keep highest Strahler order code

Uppermost segments

- From-nodes without corresponding To-nodes

• Summarize To-nodes

• Relate From-nodes to To-nodes

• “Unrelated” From-nodes are

 part of uppermost segments

• Code segments create view end_node_frequency as

select node, count(node) as

frequency from end_nodes group by node

Bridge segments

- From-nodes with a single To-node

create view bridge_nodes as

select * from end_node_frequency

inner join segments on

end_node_frequency.node = segments.to_node

where end_node_frequency.frequency = 1 and

segments.code = segments.curr_ord

Braided streams

- Start at To-nodes with multiple From-nodes

- Code bridge segments

- Keep highest order at downstream confluences

Resulting Network

Magic of Attribute

- Quality control & efficiencies

• Find gaps easily

• Nightly updates of database because of attribute changes

• Good database design/database normalization

• Faster more reliable updates

