
 1

An alternative method for automatic coding of
stream order on digital stream network data

Gido Langen
Surveyor General Branch
Natural Resources Canada
Gido.Langen@NRcan.gc.ca

Knowledge of stream order is necessary for appropriate watershed management
techniques, and a new method for automating stream order in digital
hydrographic data sets is presented here. This approach uses a relational
database and geographic information system (GIS) along with structured query
language (SQL) to automatically code a digital hydrographic database to Strahler
stream order. The procedure was successfully tested on a hydrographic
database from the Province of Alberta, Canada containing nearly one million
stream segments. The method ran error-free using significantly less processing
time than other alternative approaches, and can be applied to other stream data
sets.

Keywords: stream order; automated stream order coding; watershed
management; hydrographic data

1. Introduction
Resource management and, in particular, water resource management requires
a good understanding of watershed issues. Addressing these issues usually
involves use of hydrographic data such as stream and lake features, which have
been captured in spatial databases. From these hydrographic data, we can
derive stream network data, composed of stream centerlines and arbitrarily
placed flow lines through other features such as lakes. While their usefulness is
somewhat limited, it is the information that is stored with these data sets such as
stream flow or particulate matter that makes them useful when investigating
watershed issues. Collecting that information, however, is expensive. Instead,
one can group stream network data on common characteristics so that
correlation with land use concerns, such as the impact of land use on fish habitat
and changes in erosion potential, can be estimated. A widely adopted method of
stream network classification is Strahler’s stream ordering (Strahler 1952, 1957),
which has been applied to stream network data throughout the world.

Many organizations apply stream ordering to manage and assess natural
resources. This can reflect the different landscape and resource characteristics
along waterways as illustrated by correlating water chemistry parameters with
Strahler-Order coded streams (Dodds and Oakes 2008), and by using Strahler-
Order coded streams for better forest management (Prepas et al. 2008). As
physical and biological changes occur in streams from the headwaters to
downstream sections as predicted from the river continuum concept (Vannote et
al 1980; Johnson et al. 1995; Mourier et al. 2008), knowledge of stream order is

mailto:Gido.Langen@NRcan.gc.ca

 2

important to aquatic ecology and watershed management. Furthermore, stream
ordering is a more cost-effective method than classifying streams on the basis of
channel morphology (Rosgen and Silvey 1996).

Coding stream network data according to Strahler’s methods can be an
extensive effort in itself when coding the data interactively. Only a few
companies provide automated Strahler-Order coding services such as RivEX
(Hornby 2010), or software tools (ESRI 2010, Safe Software 2010) which use an
algorithm developed by Gleyzer et al. (2005). However, this method may not be
easily accessible to most readers who lack a good understanding of set theory,
and it may be rather difficult to implement without strong programming skills.

Miller et al. (1996) used the topological relationship of upstream and downstream
line segments, but their method is rooted in the procedural programming
paradigm (i.e. specifying the steps the program must take to reach the desired
state) as opposed to using only relational database techniques. Finally, Whitaker
et al. (2002) used the topological relationships of upstream and downstream line
segments for automated stream leveling but did not extend the approach to
stream ordering. Neither approach used a purely relational database driven
technique which we do in our approach. This article describes a simple but
effective method to automatically apply Strahler-Order codes to stream network
data. It only requires updating of attribute values and, moreover, no spatial data
editing is needed.

2. Methodology
2.0 Prerequisites
Any stream network data used with the described method of Strahler-Order
coding must be fully topologically structured (see Appendix B). It must be one-
directional, flowing from source to destination with each line segment having a
unique identifier and start and end nodes. The stream network may be braided
having divergent-convergent stream segments; circular flow, however, is not
permitted.

2.1 Sample Data Set
Figure 1 illustrates a small abstracted sample of a stream network to
demonstrate automated Strahler-Order coding. Streams in Figure 1 flow
generally from the southwest to the northeast, and belong to three levels of
Strahler-Order: 1, 2 or 3. Strahler Order is a form of stream ordering based on
accumulation. Classification begins with First Order at the headwaters of the
stream network and increases in Strahler Order class towards the mouth. Every
confluence of streams of the same order will increment the Strahler Order
downstream except where they arise from the confluence of braided streams.
Confluences between streams of higher and lower order result in the higher
stream order continuing downstream without any increase in the Strahler-Order
value.

 3

2.2 Methods
We use an iterative method of elimination as illustrated in Figure 2 to assign
Strahler-Order values. In the first iteration, we locate the outermost branches of
a stream network applying rules that we describe later in the article. This

Figure 1. Sample stream network with 3 levels of Strahler-Order coding

Figure 2. Iterative elimination of branches

 4

approach is opposite to that taken by Whitaker et al. (2002) who automated
stream leveling starting at the terminus rather than the headwaters. Once the
outermost branches have been identified, we set their Strahler-Order values to 1,
and then eliminate them from the network, with the remaining uncoded branches
unchanged. We mimic elimination of branches using the Strahler-Order values
where a Strahler-Order value of 0 signifies presence of uncoded stream
segments, while a value larger than 0 conveys absence of uncoded stream
segments (that is the already coded segments). In the second iteration, “new”
outermost branches remain after “eliminating” the already coded first-Order
branches. We locate them applying the same rules as in the first iteration except
that their Strahler-Order value is set to 2 after they have been identified.
Similarly, the Strahler-Order value of the last remaining branch is set to 3 after
the third iteration.

Personal anecdotal evidence suggests that most organizations that manage
natural resources usually lack the programming experience to develop
automated Strahler-Order coding programs, or the funding to acquire software
(Safe Software 2010) for that purpose. GIS software, on the other hand, is
usually at hand including Relational Database Management System (RDBMS)
technology. Most GIS users are familiar with Structured Query Language (SQL)
commands (Codd 1970) required to operate RDBMS software. In this article, we
provide an SQL solution to automate Strahler-Order coding.

2.2.1 Data structure
In order to solve Strahler-Order coding of streams automatically, we first
represent the sample network by segments and nodes (Figure 3), and store this
representation in two tables: Segment and Node (Figure 4).

We name the segments A through M and number the nodes 1 through 14.
Nodes play an important role in the Segment table: They define a segment’s
direction by serving as either Start-node or End-node, and frequently function
simultaneously as both Start-node and End-node. For example, Node 2 serves
as Start-node of segment C and End-node of segment D.

2.2.2 Automation rules
The relationship between segments and nodes forms the basis for locating
particular segments. Our method dictates that we find the outermost branches of
the stream network in each iteration. A branch, though, may consist of more
than one segment; for example, segments C and D form a branch with only D
being a source segment. First, we determine all source segments which share
one characteristic: Their Start-nodes have no corresponding End-nodes.

Rule (1) specifies that we find all segments whose Start-nodes have no
corresponding End-nodes and set their Strahler-Order code to the current
Strahler-Order value. For example, node 13 serves as Start-node of source
Segment D but never functions as End-node.

 5

Figure 3. Graphic representation of sample stream network

Figure 4. Database tables Segment and Node

 6

The first rule suffices to find all source segments, while all other segments
remain uncoded. We still need to find all segments within source branches that
are downstream from source segments. For example, segments C and D form a
complete source branch of which only source segment D has been coded so far.
They may have been split because they represent different stream
characteristics: Segment C may represent a perennial stream while segment D
may represent an intermittent stream. The question arises: “How we can find the
remaining segments in source branches?” We could locate all downstream
segments which would locate segment C but also segment B. They differ in that
segment B originates from a confluence of multiple upstream segments while
segment C starts at a node that merely forms a bridge between two segments.
That rationale, however, begs a second question: “How do segments C and G
differ?” Both are downstream from a single upstream segment. But only
segment C is downstream from an already coded upstream segment. We apply
both characteristics in a second rule.

Rule (2) specifies that we find all segments downstream from source
segments so long as their connecting nodes are merely bridges between two
connecting segments and the upstream segment has already been Strahler-
Order coded.

The second rule in itself is applied iteratively until the source branch ends in a
node that represents a confluence. A third rule comes into play to determine
braided streams which start with divergent stream segments. In terms of the
topological model, braided streams start at nodes that are used more than once
as start nodes.

Rule (3) specifies that we find all nodes that are the Start-node of more than
one segment. We apply the second rule to find all downstream segments
within braided branches and code them as braided segments.

A fourth rule is required to account for confluences arising from braided streams
to prevent increasing the downstream Strahler-Order.

Rule (4) specifies that confluences arising from braided streams keep the
highest Strahler-Order code of the upstream converging stream segments.

Rules (3) and (4) are also applied to braided streams within braided streams.

2.2.3 Implementation
We employ relational database techniques to implement our method. First, we
find all source segments – segments with Start-nodes that never occur as End-
nodes. We start by determining all unique End-node values in the network as
shown in the Unique-end-node table, and then find all the corresponding Start-
node values in the Segment table that cannot be matched with End-node values

 7

Figure 5. Segment selection where Start-nodes are not among nodes in Unique
 End-node Table

Figure 6. Frequency of End-node values

 8

in the Unique-end-node table. The resulting six records are highlighted with
bullets in the Segment table in Figure 5; they become the source segments. We
enter the value 1 in the Code field.

For example, node 1 occurs once as Start-node of segment A and never as End-
node of any other segment. Therefore, segment A becomes a source segment
and is assigned Strahler-Order code 1.

Second, we determine segments downstream from source segments up to the
first confluence. These segments are still uncoded but should receive the current
Strahler-Order code (cf. segment C in Figure 2). We know from the discussion
above that these segments have a Start-node value that occurs only one
additional time as the End-node value of corresponding upstream segments. We
can find these nodes by summarizing the End-node values of all segments and
examining their frequency as listed in the Frequency table in Figure 6.

Only End-node values with a frequency of 1 bridge upstream and downstream
segments, resulting in four candidates marked with bullets in Figure 6. These
are candidates across the entire stream network. Only nodes that form a bridge
to segments that have already been coded are desired – in our sample, we only
want End-node 2. We can find the desired End-node values applying the
following rationale: we require all End-node values that have a frequency of 1 in
Figure 6 and whose corresponding segments have already been assigned the
current Strahler-Order code. Only segment D has an End-node value that
matches those marked in Figure 6 whose Strahler-Order code value is already 1
as depicted in Figure 7.

We can now search for downstream segments. We determine downstream
segments when matching their Start-node values to End-node values of the
currently selected segments as shown in Figure 8. In our example, only Start-
node 2 of segment C will match End-node 2 of segment D. We set its Strahler-
Order code value to 1.

We invoke the second rule only until a node is encountered that represents a
confluence that does not originate from converging braided segments. Segment
C ends with node 3 which represents a confluence, which completes coding of
Strahler-Order level 1. At the second level of Strahler-Order coding, Segment B,
F, G and H constitute a branch. We apply rule 1 once to find the new source
segment B, but apply rule 2 repeatedly to capture segments F, G and H in
cascading sequence until we encounter node 9 – the confluence of segments H,
L and M.

Third, we determine braided stream segments. We summarize the From-nodes
values of all segments, examine their frequency, and find that node 11 occurs
twice as Start-node identifying it as the beginning of braids. The downstream
segments, G and N, are coded as “braided” (in our implementation receiving a

 9

Figure 7. Selection of segments through bridge nodes

Figure 8. Determining downstream segment C

 10

value of “1”). Forth, we propagate the Strahler-Order value “2” of segments G
and N to segment H because it is downstream from a confluence of braided
segments (and, therefore, does not increase the Strahler-Order value).

3. Application
We applied our method to the stream network data set of the Province of Alberta,
Canada, which is fully topologically structured (Jaques 2007). The data reside in
an ESRI Spatial Database Engine database and are provided in ESRI formats
(ESRI 2010). The complete data set includes almost 1,000,000 segments
covering seven major drainage basins from Strahler-Order level 1 up to 10. The
Province of Alberta required that all streams be Strahler-Order coded. A manual
approach was not considered feasible as it would have required months to
complete. In addition, it would have required a thorough quality control process.
By contrast, our database driven technique required merely a single day (24 hrs)
of computer processing on a standard PC (3.0 GHz chip, Pentium 4 CPU)
running a common database software. Although the algorithm is airtight, a
visual, color-coded quality check of the output was done; no errors were
discovered. The actual Structured Query Language (SQL) code is simple (and
does not require any advanced database technology training) (see Appendix A).
Furthermore, the database script runs error free. No additional quality control is
required once the program completes, assuming that the input data are fully
topologically structured, have no unintended gaps, and possess correct flow
direction. This method can also be used for checking the integrity of the input
data prior to Strahler-Order coding them in the first place.

4. Conclusions
A straightforward procedure using a relational database in a GIS environment
was applied to a digital stream network data set and successfully coded all
stream segments to their correct Strahler stream order. This method is easier to
implement then programming, and does not require accuracy checking if the
original dataset is error-free. The SQL script will be used for watershed
management, river ecology and hydrologic applications in Alberta, Canada, and
can be used on any topologically structured digital stream data set.

Acknowledgements
This article is based on work that was completed for a project funded by the
Government of Alberta, Department for Sustainable Resource Development,
Resource Information Management Branch.

References
Codd, E.F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM (Association for Computing Machinery) 13 (6): 377–
387.

Dodds, W.K., and R.M. Oakes. 2008. Headwater influences on downstream
water quality. Environmental Management 41(3), 367-377.

http://www.acm.org/classics/nov95/toc.html

 11

ESRI (Environmental Systems Research Institute), 2010. (cit. 2010-04-01)
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=welcome

Gleyzer, A., M.Denisyuk, A. Rimmer, and Y. Salingar. 2004. A fast recursive GIS
algorithm for computing Strahler stream order in braided and nonbraided
networks. Journal of the American Water Resources Association 40 (4), 937–
946.

Hornby, D. 2010. RivEX – A vector network processing tool for ArcGIS 9
[online]. D. Hornby. Available from: http://www.rivex.co.uk (Accessed 15 April
2010).

Johnson, B.L., W.B. Richardson, and T.J. Naimo. 1995. Past, present, and
future concepts in large river ecology. Bioscience 45(3), 134-141.

Jaques, K. 2007. Base features derived watershed delineation and hydrocoding -
Strahler order coding version 1.0. August 2007. Department of Sustainable
Natural Resources, Alberta, Edmonton, Canada.

Miller, S.N., P. Guertin, and D.C. Goodrich.1996. Linking GIS and
Geomorphologic Field Research at Walnut Gulch Experimental Watershed.
American Water Resource Association. Pages 40-44, in Symposium on GIS and
Water Resources. Sept 22-26, 1996. Ft. Lauderdale, FL.

Mourier, B., C. Walter, and P. Merot. 2008. Soil distribution in valleys according
to stream order. Catena 72 (3), 395-404.

Prepas, E.E. Burke, Janice M. MacDonald, J. Douglas, G. Putz, and D.W. Smith
2008. The FORWARD Project: objectives, framework and initial integration into a
detailed forest management plan in Alberta. Forestry Chronicle 84 (3), 330-337

Rosgen, L. and H.L. Silvey. 1996. Applied River Morphology. Wildland Hydrology
Books, Fort Collins, CO.

Strahler, A.N. 1952. Dynamic basis of geomorphology. Geological Society of
America Bulletin 63, 923-938.

Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology.
Transactions of the American Geophysical Union. 38(6), 913–920.

Safe Software. 2010. Stream Order Calculator [online].
http://www.fmepedia.com/index.php/StreamOrderCalculator (Accessed 15 April
2010)

javascript:__doLinkPostBack('','ss%7E%7EAU%20%22Prepas%2C%20Elie%20E%2E%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAU%20%22Burke%2C%20Janice%20M%2E%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAU%20%22MacDonald%2C%20J%2E%20Douglas%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAU%20%22Smith%2C%20Daniel%20W%2E%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EJN%20%22Forestry%20chronicle%22%7C%7Csl%7E%7Erl','');

 12

Whitaker, S., L. Stanislawski and M. Hamann. 2002. Automated stream leveling
for the high-resolution National Hydrography Dataset Pages 121-125, in
Proceedings of the 22nd Annual ESRI International User Conference, July 8–12,
2002. San Diego. CA.

Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing.
1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic
Sciences 37:130-137.

 13

Appendix A – SQL Code
use strahler

go

alter table segments add curr_ord int

alter table segments add braid_lvl int

go

create view coded_segments as

select * from segments

where code > 0

go

create view uncoded_segments as

select * from segments

where code = 0

go

create view end_nodes as

select node from nodes

inner join segments

on nodes.node = segments.to_node

where segments.code = 0 or segments.code = segments.curr_ord

go

create view start_nodes as

select node from nodes

inner join segments

on nodes.node = segments.from_node

where segments.code = 0 or segments.code = segments.curr_ord

go

create view end_node_frequency as

select node, count(node) as

frequency from end_nodes group by node

go

create view start_node_frequency as

select node, count(node) as

frequency from start_nodes group by node

go

create view bridge_nodes as

select * from end_node_frequency

inner join segments on

end_node_frequency.node = segments.to_node

where end_node_frequency.frequency = 1 and

segments.code = segments.curr_ord

go

create view braid_nodes as

select * from start_node_frequency

inner join segments on

start_node_frequency.node = segments.from_node

where start_node_frequency.frequency > 1

go

update segments set curr_ord = 0

update segments set braid_lvl = 0

go

update segments set braid_lvl = 1

where segments.from_node in (

select from_node from segments

inner join start_node_frequency on

segments.from_node = start_node_frequency.node

where start_node_frequency.frequency > 1)

 14

go

while (select min(code) from segments) = 0

begin

 update segments set curr_ord = curr_ord + 1

 update uncoded_segments set code = curr_ord

 where segment in (

 select segment from uncoded_segments

 where from_node not in

 (select node from nodes

 inner join uncoded_segments

 on nodes.node = uncoded_segments.to_node))

 while (select count(uncoded_segments.segment)

 from uncoded_segments

 inner join bridge_nodes on

 uncoded_segments.from_node = bridge_nodes.node) > 0

 begin

 update uncoded_segments set code = curr_ord

 where uncoded_segments.segment in (

 select uncoded_segments.segment from uncoded_segments

 inner join bridge_nodes on

 uncoded_segments.from_node = bridge_nodes.node)

 update coded_segments set braid_lvl = 1

 where coded_segments.segment in (

 select coded_segments.segment from coded_segments

 inner join bridge_nodes on

 coded_segments.from_node = bridge_nodes.node

 where bridge_nodes.node in (

 select bridge_nodes.node from bridge_nodes

 inner join coded_segments on

 bridge_nodes.node = coded_segments.to_node

 where coded_segments.braid_lvl = 1))

 end

 update uncoded_segments set code = curr_ord

 where uncoded_segments.from_node in (

 select uncoded_segments.from_node from uncoded_segments

 inner join coded_segments on

 uncoded_segments.from_node = coded_segments.to_node

 where coded_segments.braid_lvl > 0)

 while (select count(uncoded_segments.segment)

 from uncoded_segments

 inner join bridge_nodes on

 uncoded_segments.from_node = bridge_nodes.node) > 0

 begin

 update uncoded_segments set code = curr_ord

 where uncoded_segments.segment in (

 select uncoded_segments.segment from uncoded_segments

 inner join bridge_nodes on

 uncoded_segments.from_node = bridge_nodes.node)

 end

end

 15

Appendix B-1 – Creating a Topologically Structured Network

None of ESRI’s native data formats that are editable in ArcGIS have an implicit
topological data model. For example, neither a line’s start/end nodes nor its left
and right neighboring polygons are implicitly stored in the data model. The
direction of a line segment is implicitly defined in the data structure from source
to destination. But the data model won’t reveal whether the connecting node
between two lines is the start or end node of a line segment. However, a fully
topologically structured stream network data model is required for processing
with the SQL scripts described in this paper. For that reason, we report a
method on how to create a topological data model in ArcMap with the Python
scripts included in Appendix B-2. The following description outlines the process
of creating a dataset of nodes and identification and removal of redundant nodes.

First, we create nodes at the beginning and end of each line segment signifying
them as either Start or End node, respectively, while also providing a unique ID-
value for each node. At the same time, the ID of its source line segment is also
stored with each node, which is significant in the final step. Also, we separate
Start and End nodes into two data sets: the start and end node data sets. At
this state, there are many redundant node ID’s because the end nodes of almost
all line segments correspond exactly to the start nodes of the downstream line
segments. In the next paragraph, we describe how to remove the redundant
nodes, including how to deal with nodes where braiding or confluences occur in
stream networks (Fig 1).

Figure 1. Node ID assignment to remove redundancy treatment in three cases

Figure 1a. Single-channels

Figure 1b. Stream confluences

Figure 1c. Braided streams

 16

We remove redundant nodes by performing a spatial join between the start and
end node data sets. Start and End nodes of adjacent upstream and downstream
line segments must coincide. In single-channels the spatial join propagates the
ID-value of each downstream Start node to the upstream end node data set (Fig
1a). At stream confluences (Fig 1b) the end nodes of tributary streams become
redundant and are replaced by the start node ID of the downstream line
segment. At braids (Fig 1c) the start nodes of the multiple downstream
segments become redundant, and replaced by the end node ID of the upstream
line segment.

Of course, terminal nodes representing sinks in the stream network have no
corresponding Start nodes, and neither do nodes representing network sources,
which have no corresponding End nodes. In those cases, attribute values of the
spatially joined attributes are “0”; inadvertent breaks in the stream network are
also causing “0”-values which are ideal for quality control of the stream
network.

Finally, both start and end node data sets can be joined to the line segment
table to build the fully topologically structured data model where every line
segment has Start and End nodes with ID-values that match those of the
respective upstream and downstream line segments. The Start and End node
ID-values are propagated to the line segment table through relates. And all
redundant nodes are removed through relates with the line segment table.

 17

Appendix B-2 – Python Code

B-2.1 : mk_nodes.py
Import ArcGIS Python module

import arcpy

Variables for stream and node data sets and current directory

Dir = "C:/Gido/Publications/Strahler Order Coding/Braided"

Streams = "Streams.shp"

Nodes = "Nodes.shp"

Set current directory

arcpy.env.workspace = Dir

Creating node data set from segments data set

arcpy.CreateFeatureclass_management(Dir, Nodes, "Point")

arcpy.management.AddField(Dir + "/" + Nodes, "Type", "Text", "", 8)

arcpy.management.AddField(Dir + "/" + Nodes, "Segment", "Text", "", 8)

Database cursor for looping over stream segments

StreamRows = arcpy.SearchCursor(Dir + "/" + Streams)

Database cursor for creating (inserting) nodes

NodeRows = arcpy.InsertCursor(Dir + "/" + Nodes)

Point object for node creation

PointObject = arcpy.Point()

Looping through the stream segment data set,

starting with the first segment

Row = StreamRows.next()

while Row:

 # Get segment's spatial characteristics, and its name

 Feature = Row.getValue("Shape")

 Segment = Row.getValue("Segment")

 # Ensure to get start node even if segment is a multipart feature

 Parts = Feature.partCount

 FirstPart = Feature.getPart(0)

 FirstPoint = FirstPart.next()

 # Ensure to get the very end node

 #even if segment is a multipart feature

 LastPart = Feature.getPart(Parts - 1)

 LastPartVertexCount = LastPart.count

 # Looping through vertices of last part to get last vertex

 LastPartNextVertex = LastPart.next()

 while LastPartNextVertex:

 LastPartLastPoint = LastPartNextVertex

 LastPartNextVertex = LastPart.next()

 # Creating node from segment's start point

 newRow = NodeRows.newRow()

 PointObject.X = FirstPoint.X

 PointObject.Y = FirstPoint.Y

 newRow.setValue("Shape", PointObject)

 newRow.setValue("Segment", Segment)

 newRow.setValue("Type", "Start")

 NodeRows.insertRow(newRow)

 18

 # Creating node from segment's end point

 newRow = NodeRows.newRow()

 PointObject.X = LastPartLastPoint.X

 PointObject.Y = LastPartLastPoint.Y

 newRow.setValue("Shape", PointObject)

 newRow.setValue("Segment", Segment)

 newRow.setValue("Type", "End")

 NodeRows.insertRow(newRow)

 Row = StreamRows.next()

Ccalclating unique ID values for each node

Expr = "!FID! + 1"

arcpy.management.CalculateField(Nodes, "ID", Expr, "Python")

Cleaning up variable names

del StreamRows, NodeRows

B-2.2 : mk_start_end_nodes.py
Import ArcGIS Python module

import arcpy

Variables for node data sets and current directory

Nodes = "Nodes.shp"

StartNodes = "Start_nodes.shp"

EndNodes = "End_nodes.shp"

Dir = "C:/Gido/Publications/Strahler Order Coding/Braided"

Creating start node data set

arcpy.management.MakeFeatureLayer(Nodes, "Start_nodes")

arcpy.management.SelectLayerByAttribute("Start_nodes", "NEW_SELECTION",

" \"type\" = 'Start' ")

arcpy.management.CopyFeatures("Start_nodes", Dir + "/" + StartNodes)

Creating end node data set

arcpy.management.MakeFeatureLayer(Nodes, "End_nodes")

arcpy.management.SelectLayerByAttribute("End_nodes", "NEW_SELECTION", "

\"type\" = 'End' ")

arcpy.management.CopyFeatures("End_nodes", Dir + "/" + EndNodes)

Re-name fields names

arcpy.management.AddField(Dir + "/" + StartNodes, "Start_ID", "Long",

5)

arcpy.management.AddField(Dir + "/" + StartNodes, "Start_Seg", "Text",

5)

arcpy.management.AddField(Dir + "/" + EndNodes, "End_ID", "Long", 5)

arcpy.management.AddField(Dir + "/" + EndNodes, "End_Seg", "Text", 5)

arcpy.management.CalculateField(Dir + "/" + StartNodes, "Start_ID",

"!id!", "Python")

arcpy.management.CalculateField(Dir + "/" + StartNodes, "Start_Seg",

"!segment!", "Python")

arcpy.management.CalculateField(Dir + "/" + EndNodes, "End_ID", "!id!",

"Python")

 19

arcpy.management.CalculateField(Dir + "/" + EndNodes, "End_Seg",

"!segment!", "Python")

arcpy.management.DeleteField(Dir + "/" + StartNodes, ["ID", "Type",

"Segment"])

arcpy.management.DeleteField(Dir + "/" + EndNodes, ["ID", "Type",

"Segment"])

B-2.3 : mk_spatial_joins.py
Import ArcGIS Python module

import arcpy, sys

Variables for node data sets and current directory

StartNodes = "Start_nodes.shp"

EndNodes = "End_nodes.shp"

StartEndNodes = "Start_end_nodes.shp"

EndStartNodes = "End_start_nodes.shp"

StartEndNodesStats = "Start_end_nodes_stats.dbf"

EndStartNodesStats = "End_start_nodes_stats.dbf"

Dir = "C:/Gido/Publications/Strahler Order Coding/Braided"

StatsFields = [["End_ID", "Count"]]

CaseField = "End_ID"

Create spatial joins between start and end and visa versa

arcpy.analysis.SpatialJoin(StartNodes, EndNodes, Dir + "/" +

StartEndNodes, "JOIN_ONE_TO_MANY")

arcpy.analysis.SpatialJoin(EndNodes, StartNodes, Dir + "/" +

EndStartNodes, "JOIN_ONE_TO_MANY")

Renumber end nodes to start nodes from down-stream segments

but not for braiding downstream segments

arcpy.analysis.Statistics(EndStartNodes, Dir + "/" +

EndStartNodesStats, StatsFields, CaseField)

arcpy.management.MakeTableView(EndStartNodesStats,

"EndStartNodesStatsView")

Expr = " \"Frequency\" > 1 "

arcpy.management.SelectLayerByAttribute("EndStartNodesStatsView",

"NEW_SELECTION", Expr)

arcpy.management.DeleteRows("EndStartNodesStatsView")

arcpy.management.JoinField(EndStartNodes, CaseField,

EndStartNodesStats, CaseField)

arcpy.management.MakeFeatureLayer(EndStartNodes, "EndStartNodesView")

arcpy.management.SelectLayerByAttribute("EndStartNodesView",

"NEW_SELECTION", " \"Frequency\" > 0 and \"Start_ID\" > 0 ")

arcpy.management.CalculateField("EndStartNodesView", "End_id",

"!Start_id!", "Python")

Renumber start nodes to end nodes from up-stream segments when

braiding

Expr keeps only end nodes at stream braiding

arcpy.Statistics_analysis(StartEndNodes, Dir + "/" +

StartEndNodesStats, StatsFields, CaseField)

arcpy.management.MakeTableView(StartEndNodesStats,

"StartEndNodesStatsView")

Expr = " \"Frequency\" = 1 or \"End_id\" = 0 "

 20

arcpy.management.SelectLayerByAttribute("StartEndNodesStatsView",

"NEW_SELECTION", Expr)

arcpy.management.DeleteRows("StartEndNodesStatsView")

arcpy.management.JoinField(StartEndNodes, CaseField,

StartEndNodesStats, CaseField)

arcpy.management.MakeFeatureLayer(StartEndNodes, "StartEndNodesView")

arcpy.management.SelectLayerByAttribute("StartEndNodesView",

"NEW_SELECTION", " \"Frequency\" > 0 ")

arcpy.management.CalculateField("StartEndNodesView", "Start_id",

"!End_id!", "Python")

B-2.4 : mk_segment_table.py
Import ArcGIS Python module

import arcpy

Variables for node data sets and current directory

Dir = "C:/Gido/Publications/Strahler Order Coding/Braided"

StartEndNodes = "Start_end_nodes.shp"

EndStartNodes = "End_start_nodes.shp"

Streams = "Streams.shp"

Nodes = "Nodes.shp"

arcpy.management.JoinField(Streams, "Segment", StartEndNodes,

"Start_seg", "Start_ID")

arcpy.management.JoinField(Streams, "Segment", EndStartNodes,

"End_seg", "End_ID")

arcpy.management.JoinField(Nodes, "Id", StartEndNodes, "Start_ID",

"Start_ID")

arcpy.management.JoinField(Nodes, "Id", EndStartNodes, "End_ID",

"End_ID")

arcpy.management.MakeFeatureLayer(Nodes, "NodeLayer")

Expr = " \"Start_ID\" = 0 and \"End_ID\" = 0 "

arcpy.management.SelectLayerByAttribute("NodeLayer", "NEW_SELECTION",

Expr)

arcpy.management.DeleteRows("NodeLayer")

